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PREFACE

This report develops a set of nonlinear partiai differential equations which describe the coupled transfer
of energy and mass through hygroscopic porous media, particularly with reference to textile materials
in woven, nonwoven, and laminated forms. The report focuses on the derivation of the equations and
their presentation in a form suitable for numerical solution.

This work was undertaken during the preliminary preparation of a doctoral dissertation proposal to the
College of Engineering at the University of Massachusetts Lowell. Dr. Majid Charmchi, the author's
advisorin the Department of Mechanical Engineering, provided guidance, suggestions, and encouragement
during the derivation of the equations given in this report. The two technical reviewers at the U.S. Army
Natick Research, Development and Engineering Center weie Barry Decristofano of the Science and
Advanced Technology Directorate, and Gary Proulx of the Survivability Directorate. These two
reviewers provided especially valuable suggestions and comments, and pointed out several errors in the
draft version of the report.
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SYMBOLS AND ABBREVIATIONS

Roman Letters

A area [ni2]
a. A,/1V, surface of the c-13 interface per unit volume [m']
ým(t) material surface [m2]
c constant pressure heat capacity [J/kg-°K]

mass fraction weighted average constant pressure heat capacity [J/kg-0 K]
D gas phase molecular diffusivity [m2/sec]
Da diffusion coefficient of water vapor in air [m2/sec]
D//f effective gas phase diffusivity [m2/sec]
g gravity vector [rn/sec2]

h enthalpy per unit mass [J/kg]
ho reference enthalpy [J/kg]

hi partial mass enthalpy for the ith species [J/kg]
hoo heat transfer coefficient for the a-P3 interface [J/sec-rm2 -°K]
Ah,. enthalpy of vaporization per unit mass [J/kg]
k thermal conductivity [J/sec-m-°K]k, a(P.) /a twn/ml
kýr) D(Pc )1 / T) [N/m2-°K]

K permeability coefficient [m2 ]

KA liquid phase permeability ternsor [m2/sec]

(?h~l) mass rate of desorption from solid phase to liquid phase per unit volume [kg/sec-m 3]

(h")= V A4PG(V° -' 2 )'H0PdA

(h,,. ~ mass rate of desorption from solid phase to vapor phase per unit volume [kg/sec-rn 3]

mass rate of evaporation per unit volume [kg/sec-m 3]

outwardly directed unit normal
p pressure [N/mi2)

P p-pp' capillary pressure [N/m21
PO reference pressure [N/m 2]
p,° reference vapor pressure for component I [N/m 2]
Q volumetric flow rate [mW/secl
Q,, enihalpy of desorption from solid phase per unit mass [J/kg]
* 4 heat flux vector [J/sec-m 2]
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SYMBOLSANDABBREVIATIONS (continued)

F position vector [m]
r characteristic length of a porous media [m]
Ri gas constant for the ith species [N-mekg-*K]
T temperature [(K]
To reference temperature [*K]
TW reference temperature [°K]
T total stress tensor [N/m2]
t time [sec]
iii diffusion velccity of the ith species [m/sec]
V mass average velocity [m/sec]
Vi velocity of the ith species [rrsec]
V/(t volume of the solid phase contained within the averaging volume [m3]
Vp(t) volume of the liquid phase contained within the averaging volume [m3]

V (t) volume of the gas phase contained within the averaging volume [M3]

averaging volume [m 3]
'Vý0) material volume [m 3]
rf velocity of the P-y interface [m/sec]
iw velocity of the a-y interface [m/sec]
w2  velocity of the a-P3 interface [m/sec]

Greek Letters

ec(t) V0 //V, volume fraction of the solid phase
CA(t) VV/'I-. volume fraction of the liquid phase
EY() VV/,'. volume fraction of the gas phase

thermal dispersion vector [J/sec-ml]
a function of the topology of the liquid phase
shear coefficient of viscosity [N-sec/m 2]

p density [kg/m 3]
pi density of the ith species [kg/mr3]
Sviscous stress tensor [N/m3]
T toruosity factor
4 rate of heat generation [J/sec-m3l

*• paP./Pm,, relative humidity
j. unit tangent vector
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SYMBOLSANDABBREVIATIONS (continued)

Subscripts

.I designates the ith species in the gas phase
I liquid
L liquid
s solid
S solid
(7 designates a property of the solid phase
03 designates a property of the liquid phase
Y( designates a property of the gas phase
cr3 designates a property of the a-13 interface
ocy designates a property of the cr-y interface
fry designates a property of the Vy interface

Mathematical Symbols

d/dt total time derivative
DIDt material time derivative
a/lt partial time derivative
(iV) spatial average of a function V which is defined everywhere in space

(WvP) phase average of a function iV, which represents a property of the 13 phase

0 intrinsic phase average of a function V, which represents a property of the 13 phase

xi



Governing Equations for Multiphase Heat an"I Mass Transfer in Hygroscopic Porous Media
with Applications to Clothing Materials

1. hItroduction

The purpose of this report is to develop a comprehensive set of governing equations which describe
the coupled transfer of energy and mass through hygroscopic porous media. The report focuses on
the derivation of the equations and thei? presentation in a form suitable for numerical solution. The
various steps of the derivation are presented in sufficient detail so that the origiln of each term is
clear. The level of detail presented should make it easier to modify each equation according to the
requirements of a particular problem or material.

The basis for the set of governing equations is Whitaker's comprehensive theory for mass and
energy transport through porous media'. These equations are also applicable to mass and energy
transport through textile materials if some modifications are made. Whitaker modeled the solid
portion of the solid matrix as a rigid inert material which only participates in the transport process
through its thermal properties. In hygroscopic textile materials the diffusion of water into the solid
is a significant part of the total transport process. The inclusion of the extra transport terms into and
out of the solid matrix necessitate extensive modifications of Whitaker's original derivations.

The structure of this report follows Whitaker's derivations as closely as possible. Many references
are made to his original derivation. Where possible, the nomenclature and symbols are identical to
Whitaker's original derivation to facilitate cross-referencing between this modified set of equations
and Whitaker's original set of equations.

I I II I II I1



2. Mass and Energy Transport Equations

The hygroscopic porous media is modeled as shown below.

III, Averaging volume 'V

(vpor ,plus inert) ii p

Figure 1. Three phases present in hygroscopic porous media.

A typical porous hygroscopic textile material may be described as a mixture of a solid phase, a liquid
phase, and a gaseous phase. The solid a phase consists of the solid material (usually a polymer e.g. wool
or cotton) plus any bound water absorbed in the solid polymer matrix. The solid phase is thus a mixture
of the solid and the liquid. This definition of the solid phase means that the density is dependent on the
amount of water contained in the solid phase.

The liquid P3 phase consists of the free liquid water which may be present within the structure of the
porous solid. This would also include water which is contained within the pore spaces of the solid but
is not sorbed into the polymeric matrix. This liquid P phase is a pure component, and we will be able
to assume a constant density for it.

The gaseous y phase consists of the vapor component of the liquid (water vapor) plus the inert air
component. Since it is a mixture of water vapor and air, its density will not be constant, but will be a
function of temperature, concentration, etc.

I I I i ii ii i i2



The appropriate general transport and conservation equations to be used are:

continuity equation:

a-tP + VV(pP) = (2.1)

linear momentum:
p-DV = pg + V. T (2.2)

Dt

thermal energy equation:

Dh -v q.+- +Vi:t +4) (2.3)
Dt Dt

In keeping with Whitaker's derivation, we will neglect the viscous stress tensor

Point Equations

a-Phase -- Solid

The solid a phase is made up of the true dry solid (polymer) plus any of the liquid phase or the
vapor component of the gas phase which has dissolved into it or adsorbed onto its surface. This
may also result in a volume change for the solid a phase (swelling). The solid is now a mixture of
the true dry solid plus the liquid, so we now must account for the two components.

Since swelling is possible, which results in a small velocity of the solid portion due to its
displacement, we must account for the velocity of the solid by using the continuity equation:

23-Pa+ v. (pj•) = o(2.4)
at

and for the two components of liquid (1) + solid component (2) , the species continuity equation is:

•-+V.(pj~j)=O, i=1,2 .... (2.5)

The c phase density is not constant, since it includes the density of the solid plus the density of the
liquid contained within the solid. The species densities are likewise not constant, since the species
density is calculated on the basis of the total phase volume. For the two species:

P = VM = -MI +f2 = PI + P2 (2.6)

We will assume that the dry density of the solid, and the density of the liquid are constant, and will
call them ps and p..
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For the solid phase, we can divide the solid phase volume into the fraction taken up by the liquid,
and the fraction taken up by the solid:

Volume of Liquid (2.7)
8cL =Total a Phase Volume

The relation between the species dcensities and the solid and liquid densities is:

P = F-PL + 0 - eL)Ps = PI + P2 (2.8)
PI F-ULPL (2.9)

P2 G( - P,,)Ps (2.10)

The density and velocity of the mixture, in terms of the species densities, is given as:

Pa = Pi + P2 (2.11)

oPrp = P11 + P2A2 
(2.12)

Pa = P"OL + (1- LL( L)PS (2.13)

POVO = EGLPLVI + (1 - raL)PSV2 (2.14)

The species velocity is written in terms of the mass average velocity and the diffusion velocity as:
Vi = VCo + ii (2.15)
and the continuity equation becomes:

2-p+V.(piV¢)=-V.(pfli) , i=1, 2, 3,... (2.16)

The diffusion flux may be written in terms of a diffusion coefficient as:

pt = -pFDcFV Pa (2.17)

and the continuity equation may be written as:

_p PVy C.a(2L ) I ,i=1, 2, 3,. (2.18)
at I PraI.

For the purposes of comparison to other models of heat and mass transfer through porous materials,
it will be conveniept later on to write these equations in terms of concentrations of water
(component 1) in the solid (component 2).

We define the concentration of water in the solid (C) as:
= Mass of water = m_ = PI

Mass of the solid phase mi + m2  N (2.19)

4



If we only want to consider the continuity equation for the liquid phase, since it's really the only
material moving into or out of the solid phase, we can just use the continuity equation for the liquid,
which is:

ap" +V.(PiV,,)=V{ paDCV@2 (2.20)

Now depending on how we want to treat the solid velocity, we can rewrite this a couple of ways. If
we say that the solid velocity is included, then in terms of the true liquid density, where the species
density is given by:

Pi = 5OLPL and PC = 5 ,aLPL + (I--CcL)Ps, (2.21)

the continuity equation can be rewritten as:

PL ••L +V (5aLv.)] = V. {gVaDL.V(C,)} (2.22)

or

aO+ V.(s"v,) = - -v[eLDLV(CS)I + - - LLO s/l (2.23)at PL PL

If we can neglect the solid velocity, the continuity equation becomes:

as L (1I PSV -KLDLCV(Cv)] + -P1 I .[!DLV(C5)]} 2.4
at PL)', L (2.24)

We must also include the momentum balance:
D0 -=Pog +V'T 0 Jao" o

D t-t-- (2.25)

According to Jomaa and Puigali', we may also write thre linear momentum equation as:

PC Y = pg + V.- To (2.26)

5



There are a couple of ways to address the mass average solid phase velocity. If we assume that the
total thickness of the materials we are trying to model does not change, then total volume remains
constant, and the change in volume of the solid is directly related either to the change in volume of
the liquid phase. or the change in volume of the gas phase. Another approach is to let the total
volume of the material change with time. As the material dries out, and the tctal mass changes. the
thickness of the material will decrease with time proportional to the water loss which takes place.
Allowing the thickness of the material to change with time would result in a solid phase velocity.
which we could relate to the total material shrinkage. The two situations are illustrated in Figure 2
for a matrix of solid fibers undergoing shrinkage due to water loss.

Case 1
Solid fiber shrinkage
results in bulk thickness
reduction and nonzero
mass average solid velocity.

Case 2

Total bulk thickness and volume
do not change; shrinkage of
solid fiber portion due to
water loss does not result in a
mass average solid velocity.

Figure 2. Two methods of accounting for shrinkage/swelling due to water uptake by a porous solid.

We will assume that the shrinkage behavior is like the first case shown. This means that we must
include the mass average velocity in the derivations, and that the total material volume (or thickness
in one dimension) will no longer remain constant.

Jomaa and Puiggali also give an equation for the solid velocity, in terms of the intrinsic phase
average (discussed later) as:

( (pynl Jo pa )a (2.27)

where ý is the generalized space coordinate, with the origin at the center of symmetry, and n
depends on the geometry (n=l--plane,n=2--cylinder, n=3--sphere) according to the paper by
Crapiste et. al.1

6



The thermal energy equatiou is:

_CDo V -q0 + !--+VIWD:14 0 0  (2.28)Dt Dt

Some simplifying assumptions can be made at this point by neglecting several effects. We'll start
by dropping the reversible and irreversible work terms in the thermal energy equation, along with
the source term. and expand the material derivative:

PoD = + aN= -Vq4 
(2.29)

It will be assumed that enthalpy is independent of pressure. and is only a function of temperature,
and that heat capacity is constant for all the phases.

We can replace the enthalpy by:
h =cPT+ constant , in the a, 0, and y phases,

We can now rewrite the thermal energy equation as:

I (C ) Ta +-pC[V.V (c,)oT, +constant ] 4-V'C0  (2.30)

at a

We may apply Fourier's law to obtain:
Pa(CP )Cj- •t + VC " VT. k°V2T. (2.32)

or, for a multi-component mixture:

p(Cp)[ -- a'+ --")kaV2T-V• PjiJhj (2.33)P)G ( =N

where (CP,=,) ' (U~j=1 P'O

and the partial mass heat capacity and enthalpies (p)., h* are given by the partial molar

enthalpy and the partial molar heat capacity divided by the molecular weight of that component.

7



0 Phase -- Liquid

The continuity equation for the liquid phase is:

S?. V. (pop) = 0 (2.34)

For the thermal energy equation, as we did before, we neglect compressional work and viscous
dissipation:
Dp= WO: To = 4)0 = 0 (.5DT (2.35)

which reduces the thermal energy equation to:

PO3(at +qWi =t V, -V'qp0 (2.36)

If we assume etithalpy only depends on temperature and specific heat, as we did for the solid, we
may write the thermal energy equation for the liquid phase as:

PfJcp •( Ot+ Vp " VTP ) = kpV2T (.7

Pov7J kf)Vat (2.37)

The liquid momentum equation will be discussed later in terms of a permeability coefficient which
depends on the level of liquid saturation in the porous solid.

8



y Phase -- Gas

The gas phase is made up of the vapor form of the liquid P3 phase, and an inert component (air). We
do not need to modify any of the assumptions made by Whitaker for this phase, so we may simply
write down the equations given by Whitaker':

continuity equation:

apy +oV.(py1 )=0 (2.38)

and for the two components of vapor (1) + inert component (2) , the species continuity equation is:

at"+V .(o,.,)= , i=1,2,... (2.39)

The density and velocity of the mixture is given as:

Py = Pi + P2 (2.40)
Py Vy = P1V1 + P2V2  (2.41)

The species velocity is written is terms of the mass average velocity and the diffusion velocity as:
Vi = Vt +4i (2.42)

and the continuity equation becomes:

ap--- V .(p, (piiii) i=1, 2, 3, ... (2.43)7~t

The diffusion flux may be written in terms of a diffusion coefficient as:

PikJ = -PY!DV( Pi ) (2.44)
1PY)

and the continuity equation may be written as:

PL L i = 1, 2, 3, (2.45)

It is possible that we can neglect the change in gas density with time, or at least the change in the
density of the inert component, and only consider the continuity equation for the vapor component
of the gas phase (component 1):

'P + V"(PIV')=V PYDV(P')t (2.46)

and if we have no gas phase convection, with the ga, phase stagnant in the pore spaces, the
continuity equation becomes:

"57"= V {pyDV( ) (2.47)

9



The thermal energy equation is given as:

h ) iN

i=N

and the partial mass heat capacities and enthalpies (Zrp)i , Tj are again given by the partial molar

enthalpy and !he partial molar heat capacity divided by the molecular weight of that component.

10



Boundary Conditions

Whitaker next derives the boundary conditions for each phase interface. This section of the
original derivation must be extensively modified since we no longer have a rigid solid phase with
zero velocity. We will no longer have a simple set of boundary conditions for the solid-liquid and
solid-vapor interface. The conventions and nomenclature for the phase interface boundary
conditions are given below in Figure 3, which follows Whitaker's approach as closely as possible.

,(solid plusliud

Figure 3. Material volume containing a phase interface, with velocities and unit normals indicated.
Only two phases (solid and gas) s-hown.

Liquid-Gas Boundary Conditions

Whintaker gives the apprpriate boundary conditions for the liquid-gas interface as:

ni---1

p(solidpl).liu +pd()(-) = =o (2.50)

continuous tangent components to the phase interface w:

species jump condition given by:

P(. o , i-

p0(VP- ,).• =0 , i= 2,3 .... (2.52)

(2.53)

L 11



Solid-Liquid Boundary Conditions

The boundary conditions for the solid-liquid interface are identical except that the phase interface
velocity is given by w,

pahO (Va 0,)) Rp + pppv -rn)- a=-10rc +[4cy+ iPilh] %Pl13  (2.54)

PC(%o- T'2) O +PVp (~-' 2) =0 (2.55)

continuous tangent components to the phase interface X:

VC. Xo = -" X00'• (2.56)

species jump condition given by:

Pj(Vj--12 )fln.+P.a(c--'C, 2)"',l-O ,'j=1

Pj(fj-w2)'.0=0 ,j=2,3, ... (2.58)

Solid.Gas Boundary Conditions

The boundary conditions for the solid-liquid interface are modified even more because we have a
phase interface between two multi-component phases. The phase interface velocity is given by w,

P firy +4'Y Pink FL (2.59)

pa(Vo -Irv,).i.% +pYr(vY - 01).ii• =0 (2.60)

continuous tangent components to the phase interface X:
VC ' 0 = vi 'XF (2.61)

species jump condition given by:
(2.62)

p i(Vi- ii). +pi(Vi -ff'). , i 1 , j 1 (2.63)

pj (V - 01).n - =o ,j= 2,3, (2.64)

pi (Vi - 1))' = 0 ,i 2,3...1

12i



Volume Averaged Equations

Whitaker uses the volume-averaging approach outlined by Slattery' so that many of the complicated
phenomena going on due to the geometry of the porous material are simplified. He defines three
averages:

Spatial Average: Average of some function everywhere in the volume.

(W) = IJ VWdV (2.65)

Phase Average: Average of some quantity associated solely with each phase.

T JVJT dV (2.66)

Intrinsic Phase Average:

(ToTdV = 1_ ,dV (2.67)
Vav~ Va

We can also define volume fractions for the three phases as:vO (t(t) Vy)
C. (t) = V _-0 (t) = , EY (t) -- (2.68)

We now have the volume and volume fraction of the solid changing with time, which is not the case
with Whitaker's original derivation.

We are going to say that the total volume is conserved, or that:
V = VO (t) + VP(t)±+ VY(t) (2.69)

The volume fractions for the three phases are related by:
cc (t)=+ ep(t) + CY (t) = 1 (2.70)

and the phase average and the intrinsic phase averages are related as:
E a(TO} =(To}(2)1

13



Volume Average for Liquid 13 Phase

We will first look at the volume average for the 1P phase. It will be complicated because of the three
different phase interface velocities which we must now include in the analysis, whereas Whitaker
only had to account for the single liquid-gas interface velocity.

The continuity equation for the liquid phase is:

±P1 +V - POVO = 0(2.72)

We will integrate over tlue time-dependent liquid volume within the averaging volume, and divide
by the averaging volume to obtain:

0 (.•O +dV1at V dV (2.73)

We may take the frst term:

/ V 11,) ap .d 
(2.74)

and apply the general transport theorem5 :
_d fVdV= 2dV+f

Jd (s) a t ~ (2 .7 5 )

We note that app (2.76)at

and using the modified general transport theorem we obtain:

J() 1PL at pdV]-f4 Pp, flpydA J,%,PpW2 flpadA (2.77)

For the other tern:

VI fVO(,V-P~vV (2.78)
we may use the volume averaging theorem:

, V (-+p5 4 8 tY 'WdA (2.79)

to rewrite the term as:

L, V + (P.vp ýd = (V "(POVO)) -V. pp"(ip ly) + I I.p,, PIV "idA S Pl3ip flpadA (2.80)
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Whitaker says that we may also rewrite the time derivative term as:

d [ I f)P~~' (\PP) - P (2.81)

This allows us to rewrite the continuity equation for the liquid phase as:

a (p) +V -(ppp) pp(Vp- r) -fipyA + LAOPP VP fv) -iýýA 0(2.82)

We may assume that the density in the liquid is constant, so that:

(P0= PP(VP) (2.83)

(pp) = eppP 
(2.84)

The liquid velocity vector may be used to calculate volumetric flow rates. Whitaker gives the
example of the flow rate of the liquid phase past a surface area as:

2ý J,(Vp)fldA (2.85)

The two constant-density liquid relations given above allow the liquid phase continuity equation to
be rewritten as:

2!kf + V.Q() + Ly(p- v i, A+I (VP -02) -R0 dA = 0 (2.86)

The thermal energy equation for the liquid phase was given previously as:

PO-t +v1 'Vhf V,= -V -qI (2.87)

Whitaker notes that this may be rewritten by adding the term h [•t• + V ((PV, )lto the left-hand[at
side to get:

a (pphp) + V.- (p z13ip) = -V -4 (2.88)

15

I 'IIIIII. .



We may follow the same procedure used previously to obtain a volume averaged form of the
thermal energy equation where we use the general transport theorem for the first term and the
averaging theorem for the second and third terms to get:

hpd V4- 4p -fipcdA (2.89)

All we did here was add an additional term to Whitaker's equations due to the solid-liquid interface
velocity.

Whitaker uses the relation for the enthalpy of the liquid phase:

hp =h& +(cp)p(T o To) (2.90)
and goes through several steps, accounting for the deviation and dispersion terms from the average
propert,.es (marked with a tilde), to write an expression for the two terms:

(ph)+V ph~) po(p_ p p + (cp)5 P_ CP at)j), a

+PP (cp)P(VO).- V(iP)P + PP (cP)PV - Qpp) (2.91)

We can recognize that the term: ( at +v.(V)
is contained in the liquid phase continuity equation:

(I2 ((2.92)
so that:

-~+ .~ = -1 ' ,Y(p-0 fpM+ (p-r - rip. 2.3at ~ If3J(.3

The expression for the two terms /(Ppp) + V .(Pp/B1p• may be written as:ats

a +() p(CA)(V) V(TP) +P p

.. {/po +(cp )p((7j3)'~ V7]:;A -f(i~ rv). hpd - 2flfV (2.94)

16
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We may now substitute back into the thermal energy equation for the liquid phase:

V Lo PP (C,, )P (TO PT m0 P V)ljy

+ ' fAlPpP),dATP*(2.95)'rý

Whitaker now uses Gray's definitions of the point functions for the phase properties 6 as:

r• :(r)• +•(2.96)

This allows the liquid phase thermal energy equation to be written as:

-V -. (4p)+(zDp) 4p -qp - ' (2.97)

Whitaker now rewrites the heat flux term -V.(int) using Fourier's law (pp = -krVTi ) and the

averaging theorim to write:

17
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We may also substitute the intrinsic phase average temperature Cp To A

for the phase average teraperature (iTj) to obtain an expression for the heat flux vector:

()=- VT,) = -kp[ V(ep(Th))++ f4,, ThdA+ fý, Trft dA] (2.99)

The thermal energy equation for the liquid phase may now be written as:

a TO(c )f 0 +PP•P) (cp;=

+~J pp (cp~p tp(V -0) - pcyA 1 f-(v , ) ~iý,d

1I

f," iý,A -A+-

-V V ,5 •pA -- • dA (2.100)
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Volume Average for Gas y Phase

The gas phase continuity equation is identical, up to a point, to the continuity equations for the solid
and liquid phases:

rv) FLpdA Py(Vy 01 ~v M= 0(2.101)

For the liquid and solid phases we could assume constant density, and simplify the equation further;
we can't do this for the gas phase since the density depends on the temperature and the pressure.

Whitaker uses the Gray's expressions for the point functions again, along with the definition of the
intrinsic phase average to rewrite the gas phase continuity equation as:

++'fpxi, -0 1 ) -&pd4 = 0(21)

Whitaker then assumes we can neglect terms with products of the dispersion or deviations, so we
can drop that term to write the gas phase continuity equation as:

,(C-Y(p \l"•+V.((P,)Y(VY))+V',P•,('V,-O)'iipdA+'f Py(V,-wl)' d=O (2.103)

Since the gas is a multi-component mixture we must also go through the species continuity
equation:

T,(Pi)"+ V'-(Pivi)+ -L p i (Vi -- i) - fi.&dA -+- p i (Vi - r).F1, lA =0 i =1, 2,.. (2.104)

Whitaker's derivations may be used directly, and we can write the final form of the gas phase
species continuity equation as:

- f).F A (2.105)

If we neglect the deviation terms, and if we also consider only the species continuity equation for
the vapor component (component 1), we can rewrite the gas phase continuity equation as:

at (C, •)')+V"(1(i) -,p(V- t) " hdA = V {-(PY)>UV' ( P1)• } (2.106)
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The corresponding thermal energy equation for the gas phase may also be written as:

ri-N I r iN

i=N

V fN i1=1

+- i(piy(V v)-F,

A74 4 YJO l~d 217

+ii=N 
20
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Volume Average for Solid a Phase

The volume averaging procedure for the liquid phase was made general enough so that the same

equations also apply for the solid phase. The only differences are that now the phase interface

velocities are w2 for the solid-liquid interface, and w, for the solid-gas interface. We also need to

account for the species continuity equations. Since the two components (liquid and the solid) are

assumed to have a constant density, we will not run into the same complications we did with the gas

phase continuity equation. The appropriate subscripts for the solid phase also need to be added to

the equations.

We cannot assume that the solid phase density is constant, since it is a mixture of the solid znd the

liquid component. However, it will be less complicated than the gas phase density since we can

assume that each component's density is constant.

The solid phase, continauity equation is:

a ++if,(V,-0 - + ,, (N - ,'2) • dA = 0(2.108)

and the species continuity equation is:

a (p,)+V.(Pj-.)+ (,-( , ).,•..,+-w 2 ). <,vii•dA=o j=l, 2, (2.109)

We can follow the same derivation used for the gas phase to write the gas phase continuity equation

as:
a F.-(,•<<•,,)+V.(<PO<,> <•<,)+ If .j,,p(,%<-,V2)-.<,d,,+.! ,,,, Pao(%<- 01) <-,•:°A 0(2.110)

and the final form of the solid phase species continuity equation is:

= [. - j =1,2, .... (2111)

If we want to just follow the single liquid component (component 1) and write the continuity

equation for that species, we may write:

=V .{J(pao DV PI) (2.112)
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Later on, we may also want to assume that the solid velocity is zero, so we could ewrite the solid
phase continuity equation as:

•(o.(POO) + I(I-'V fip A0Vp V - .ý fd

=V.p()(FD'V (P'I"I(2.113)

The corresponding thermal energy equation for the solid phase may also be written as:
{'=N )c • }a v() + i=N~~

= j=N+ Ij Pi X Cp j l~cp)J (Pj -w4.02)-ýidA

j=l
N

j=N j=N

- x(co)J( o)+ V.I (c'P(Pi:j:o)-a" j=l j--I

V A, VE,(cr TOAUiadA}

-' fAdA -l-pdA (2.114)

This completes the continuity and thermal energy volume averaged equations for all three phases.
The various continuity equations are given in several forms, depending on whether we want to
include the solid velocity, and whether we just want to use the continuity equation for the liquid
component only, since it is the only species which is transferring between the three phases.
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3. Total Thermal Energy Equation

The three phases are assumed to be in local thermal equilibrium so that:

(TOa) =(N),)= (TY)" (3.1)

(T) ae 0,(T~,)0 + Fp(T)p + ,(T1,)' = (,)y= (TO~ = (7,)'Y (3.2)

We can now write the total thermal energy equation by adding together the thermal energy
equations for each phase, and using the local thermal equilibrium relations given above. This
equation is identical to Whitaker's, except for the addition of extra terms due to the solid-gas and
solid-liquid phase interface velocities, which are no longer zero. The equation is also written so
positive flux terms imply liquid evaporating into the gas phase, rather than condensing.

+ Ep p (C )+, + , F+ , (Pi i )] (

j=i

J i=N!

1 j=N/=1 -1VJ• =1

+ =j p(cp)/j0 (V 0 2 ).f IpdA+-L. - 2 )_-fiadA

i=N

+[( +o + ,+ )(T)1]

+(kA_ k,).J1 TpirdA L• P V A 'dA+- 4 Y'f.c'odA (3.3)

+(k -<,-, 1..,fi. r t j

23



Whitaker defines a spatial average density:
j=N i=N< V:• • ,) +F-(PP) +P-y(P) (3.4)
j=1 i=1

and a mass fraction weighted average heat capacity by:
j=N i=NC .o E<•>° (,)j + Cpp(C,) + E 1(pi)Y(C,),
j 1 (P) =1 (3.5)

This allows the first term in the thermal energy equation to be written as:[ j=Np i=N T a)
8 Y (pj)(cp)(Pi)(c) }}at =( P)CP (3.6)

We must now consider the interphase flux terms in the total thermal energy equation. In Whitaker's
derivation, he only had one interphase flux term to consider, that of the exchange of mass between
the liquid and the gas. We now have two more interphase fluxes to consider: that between the
liquid and the solid, and that between the gas and the solid.

We first follow his derivation for the liquid-gas interface, and then apply it to the other two

interfaces.

The jump boundary condition for the liquid-gas interface was shown previously to be:

pftiý(VA -) .ir j -ny+Ph V - i = - {) *nqp +[4 + NPiajlji i } (3.7)

and this may be rewritten as:
i=N

PP ho(VP - )f 3^rý + ZP)ik(vi - W)3=rl~ (q - q) .n~ (3.8)

The jump boundary condition for the solid-gas interface was shown previously to be:

j=N i=N

and this may be rewritten as:
j=N i=N

pj= hjP(Vi - fV-l )" n' + 1Pihki(Vi - wl1 ).'Ff-(lM Ey " (3.10)
j=2 i=I
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The jump boundary condition for the solid-liquid interface was shown previously to be:

j=N -

,ypaho (Vu - 2)' -icr + Pphp (Vp -rV2 ). Ipj,: hopo-).o (3.11)

j=l

Using these results, we may write the interphase flux terms in the total thermal energy equation as:

1 4p) [iap -_4y) .Rp .dA - (1c4-n4 ) .-]ddA

j=NN

+ + ,4hp(V, -,0) ,PY + PA (V,-,r) ,p
i=1

j=N -i=N
+-Xp.j(j-•l)'•,l pi (-iAi= )r]iJ dA (3.13)
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Thle total thermal energy equation is now written as:

(P)CP D(T) + [frnc'(Pjj +iA-NV, ',(A(Pv)-VT

at I =

I I i-N
TiA0 i[j i -(pi4rlr

vILy =1i=lNI

+(k~a ky) 7I Tfy dA
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Next, we can begin to express the phase interface velocities in terms of enthalpies of vaporization,

sorption, and desorption.

The enthalpies for each phase were defined previously as:

hj =hjO+(cp). (T,- Tr) (3.15)

h -- hp* ++(cp),(Tp -Tp) (3.16)

h" = 4* +(cp)i(Ty - T*) (3.17)

We also know that the intrinsic phase average temperatures, temperature dispersion, and overall
average temperatures are related by:

TO =(To Ya To (3.18)

; = (T)P _ Tp (3.19)

Ty -= (rY ) " - rf (3.20)

We may use these relations to rewrite the integrands inside the volume integrals on the left hand
side of the total thermal energy equation. Whitaker gives the result for the liquid-gas interface as:

f d

From the species jump conditions:

Pi(Vi - 0)'=1 +PO(V- ) o i--0 (3.23)

pi(Vi -rv -.i =0 , i= 2,3, ... (3.24)

where the subscript 1 refers to the component (water) which is actually crossing the phase boundary
as it goes from a liquid to a vapor.
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From the species jump conditions we may also write:

PI (V "v2) -40 = -PP(VP - r2) -pcj (3.25)

We may rewrite the integral as:

Lo=[; c) ((T -~ Pý) po(V~P -F% ,flýdA (.6

_ _ -] }

We may use the following definitions:

Ah•, (at temperature (T))= -h + (c- )I((T)- T•)+-(cl,), ((T)- Tl) ] (3.27)

( I') =Jpp (PP - iv)-5 A(3.28)

to rewrite the integral as:

oi=N pi[A _ ( _ . Aigap(?hl' (3.29)

The corresponding terms for the phase interface between the solid and the liquid are identical,
except that we no longer use the quantity Ah,_ , but instead use the differential enthalpy of
sorption7, which we will give the notation Q, . The differential heat of sorption is the heat evolved
when one gram of water is absorbed by an infinite mass of the solid, when that solid is at a
particular equilibrated moisture content. This is very similar to the heat of solution or heat of
mixing that occurs when two liquid components are mixed. For textile fibers there is a definite
relationship between the equilibrium values of the differential heat of sorption and the water content
of the fibers, and we can use those relationships in our thermodynamic equations which will be
discussed in a later section.
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The solid-liquid interface integral term is thus given as:

1 ph --(cp), tp](Vo -wr2).nfr ]
+YI [- (CP)j 10;](Vi - fz- 2). (3.30)

From the species jump conditions we may also write:

Pt (Vi - w 2 )" .a= -pl (VP -w'2 )'"p0  (3.31)

We may rewrite the integral as:

= I { I dA

We may use the following definitions:

Q, (at temperature (T)) = [h;1 • - + (cp), ((T -T) -(cp)((T) - T) (3.33)

-VL fJ. Po(.N "Y -2 f'ldA (3.34)

to rewrite the original integral as:

-,;IfAo J~li•Pj -(C p)j to ]j-'•2 )'9ap "pp [hp-(Cp)O tp ](V -f'2 )'rlpa QI(rhs) (3.35)
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For the gas-solid interface, the heat of desorption for the vapor is equal to the energy required to
desorb the liquid plus the enthalpy of vaporization required to evaporate the liquid:

Qv = Q1 + Ahkap (3.36)

The derivation is exactly the same as for the other two interfaces, where the only component
crossing the phase interface is component 1 (water) and we may write the integral as:

jfN i=N1

= (QI + A•vap xrih'v) (3.37)

For these equations (ihj,) is the mass flux desorbing from the solid to the liquid phase, (ih>) is

the mass flux desorbing from the solid into the gas phase, and (?hl, is the mass flux evaporating

from the liquid phase to the gas phase.

The total thermal energy equation now becomes:

PjT jffiN -iNN ]

+ ,ap (#IN ) + Q,,(hs )+ (Q, + Ak,,ap )(,ui',)

V[(kooSG +,<,,, + ,,•1>)(T)]'

+(=V -•k)-1 L JT •[dA

V(k Loy7 J (3.38)

+(kc< - y)- Tyf"i<Oy
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We may simplify the total thermal energy equation based on an effective thermal conductivity, and
write our total thermal energy equation in a much shorter form as:

a(T) +~= i=NC)( C'

+AhV~p(?hb,)+QI(1,I2S)+(Ql +Aklap)(?h4,)
= V .( Keff .V(T) ) (3.39)

The effective thermal conductivity can be expressed in a variety of ways as described by Whitaker,
depending on the assumptions you choose to make about the isotropy of the porous medium, the
importance of the dispersion terms, etc. The effective thermal conductivity is also an appropriate
place to include radiative heat transfer, and one could add an apparent radiative component of
thermal conductivity to the effective thermal conductivity to account for radiation heat transfer.
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4. Thermodynamic Relations

The gas phase is assumed to be ideal, which gives the intrinsic phase partial pressures of the gas
phase as:
(ýp)Y = (pj)"TRi(T) i=1,2 .... (4.1)

We also have the relations for the gas phase, where for our case component 1 is water, and
component 2 is air:

(P,)' =-(pl +(P 2)Y (4.2)

~(PI,)' = (pX)' + (P2)' (4.3)

We must also connect the differential heat of sorption, Q, with the concentration of water in the
solid phase. An example of a general form for Q,, (in Joules/gram) can be expressed as a function
of the relative humidity8 :

Q, (J/g) 195(1- .1 ' where relative humidity 0=- Ps (4.4)

1200

0
.Z 900

0

r) ' 600

.• 300

0 .2 .4 .6 .8 1.0

*Relative Humidity

Figure 4. Generic differential heat of sorption for textile fibers (sorption hysteresis neglected).

We must connect the differential heat of sorption with the actual equilibrium water content in the
solid phase. For the two component mixture of solid (component 2) plus bound water (component
1) in the solid phase, the density of the solid phase is given by:

(pa)o = %P1) +(P2) 0  (4.5)
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We could make the assumption that mass transport in the textile fiber portion is so rapid that the
fiber is always in eqi d•lIP,"tm with the partial pressure of the gas phase, or is saturated if any liquid
phase is present. This wo- ,Iiminate the need to account for the transport through the solid phase
at all. There are a variety of sorption isotherm relationships we could use, including the
experimentally-deternined relationships for a specific fiber type, but a convenient one is given by':

1 ii
Regain (R) = R+ (0.I550) ( + (1 (4.6)

[(O.25 + ) (l.25 - 0)

Rf is the standard textile measurement of grams of water absorbed per 100 grams of fiber, measured
at 65% relative humidity. We may rewrite this in terms of the intrinsic phase averages for our two
phases as:

R= Rf R 55(P') 14.1
10(P2 PS 0.25+ _ _.-P).

APP'

If we don't want to make the assumption that the solid phase is always in equilibrium, we may use
relations available between the rate of change of concentration of the solid phase and the relative
humidity of the gas phase, an example of which is given by Norden and David9 .

We may also write the vapor pressure-temperature relation for the vaporizing P phase, which
Whitaker gives for porous media as:

p xy = V(2 2 "1 Ahvap (1 1(4.8)
- P, e rp p R,-i(T)) + 1 (T) T(

This relation gives the reduction or increase in vapor pressure from a curved liquid surface resulting
from a liquid droplet influenced by the surface interaction between the solid and the liquid, usually
in a very small capillary.

In many cases, the Clausis-Clapeyron equation will be sufficiently accurate for the vaporizing
species, and the gas phase vapor pressure may be found from:

(pl)y = PO exp{_[-'ap (1_ I ) ]} (4.9)

This vapor pressure-temperature relation is only good if wve have the 1i, tuid phase present in the
averaging volume. We may also have the situation where we only have the solid phase, containing
adsorbed water, and the gas phase. To get the vapor pressure in the gas phase in this situation, we
will use the sorption isotherm, and assume that the gas phase is in equilibrium with the sorbed water
content of the solid phase.
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We can use any isotherm relation where we have the solid water concentration as a function of
relative humidity. The equation given previously is one example:

(POU Culp__ Rf 0. 55 (P1 )

(P2) =(l 01)p5 =S 0.5 25+ (PI )' 1.25- (Pl (4.10)A, ) ( -#- A

From a curve-fit, or some kind of equation solver, we find that the partial vapor pressure can be
given as a function of the volume fraction of water in the solid phase:
ýpj)y = f(ps,plps, ecj) at the temperature (T) , only eo, is unknown. (4.11)
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5. Mass Transport in the Gas Phase

The volume average form of the gas phase continuity equation was found to be:

at
and the species continuity equation was given as:

at \P/ + P1v,+VJ pf(vo -~y~ w)n1 (5.2)

where the dispersion and source terms were dropped from the equation.

If we use the definition of the mass flux from one phase to another as:

or

rlv--- p,(V-rv).R&dA , (5.4)

with the same form for the mass flux from the solid to the gas phase, the gas phase continuity
equation may be rewritten as:

a E ( r h v) +( 5 .5 )

For the two species (1--water, and 2--air), the species continuity equations are written (again
dropping the source and dispersion terms) as:

(P1),V ,)o'J (5.6)

a (Ey(P +V.((Pi) T (y))=' -( py) - V ()(5.6)

35



If we again ignore the effects of the dispersion terms in the diffusion equations derived by
Whitaker, we may incorporate an effective diffusivity into the species continuity equations, which
are now given as:

j(s T PYF) 
(V

The effective diffusivity will be some kind of function of the gas phase volume P; as the solid
volume and the liquid volume fractions increase, there will be less space available in the gas phase
for the diffusion to take place. We might try to define the effective diffusivity as:

Doff :- D'e. (5.10)

where the effective diffusivity D,, is related to the diffusion coefficient of water vapor in air (D12
or D) divided by the effective tortuosity factor T.

An example of a good relation for the binary diffusion coefficient of water vapor in air is given by
Stanish9 as:

Al2 = Y+2.y23T )7.5 (mks units) (5.11)

To simplify matters, one could assume the tortuosity factor to be constant, and let the variation in
the gas phase volume take care of the change in the effective diffusion coefficient as the volume
available for gas phase diffusion changes with solid swelling and/or liquid volume.

Another simplification is to only account for the water vapor movement, so the continuity equation
would become:

"at(p(Pt P)' +v'(pl)T<p)))-("i/v)-(rns) ' \ ( )Y "JJ (5.12)
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6. Gas Phase Convective Transport

It is important to include forced convection through porous media since this can be an important
part of the transport process of mass and energy through porous materials with high air
permeability.

It is not necessary to modify any of Whitaker's derivations for the gas phase, and if we neglect
gravity, we may write the gas phase velocity as:

(VY K ) (6.1)

where the permeability tensor K is a transport coefficient.

There are other methods to obtain an estimate of the convective velocity of a gas flow through a
porous material. It may be desirable to use one of these other relations to obtain the volume
average form of the gas velocity.

For example, we could start directly with Darcy's law:

Vp+ =0 (6.2)

and assume that for the dry porous material we have available the experimental measurement of the
specific permeability coefficient K, and then modify it to account for the decrease in gas phase
volume as the solid phase swells and/or the liquid phase accumulates. We could make the variation
in K a linear function of the gas phase volume, which has been an approach used by Stanish et. al."

K-1 Kdyry (e. )(6.3)

This is a very simple model, and may be improved upon. In the book by Dullien'2, there are a
variety of relationships for how K varies with porosity; some of those relations may be more
realistic for our purposes. We could also relate the change in the permeability to the effective
tortuosity function 'r, which also has the same factors related to the decrease in gas phase volume,
and change in geometry, that we need to account for the Darcy's law relation for convective gas
flow.

37



7. Liquid Phase Convective Transport

Whitaker's derivation for the convection transport of the liquid phase is the one of the most
complicated parts of his general theory. He accounts for the capillary liquid transport, which is
greatly influenced by the geometry of the solid phase, and the changeover from a continuous to a
discontinuous liquid phase. His eventual transport equation, which gives an expression for the
liquid phase average velocity is quite complicated, and depends on several hard-to-obtain transport
coeffients. The final equation is given as:

(VP) = _({.L+J '[keVEP + k(T)V(T) - (PP - Py)] (7.1)

(symbol definitions given in nomenclature table)

One advantage of Whitaker's derivation is that it is almost completely independent of the other
transport equation derivations. This should mean that we may use another expression for the liquid
phase velocity if we find one that is more amenable to experimental measurement and verification.

An example of an equation which is more empirical is again given by Stanish". The velocity is
assumed proportional to the gradient in pressure within the liquid. The pressure in the liquid phase
is assumed to be the sum of the gas pressure within the averaging volume minus the capillary
pressure (Pe):

N -=(~V\ + ýP) o(7.2)

If we use a relation of this kind it is necessary to obtain an equation for the capillary pressure as a
function of the fraction of non-solid volume occupied by the liquid phase, as well as a relation for
the variation in the permeability coefficient as a function of liquid phase volume fraction. It is also
necessary to to determine when the liquid phase becomes discontinuous so that liquid flow ceases at
that point. These types of relations can be determined experimentally for materials of interest, or
they may be found in the literature for quite a wide variety of materials.
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8. Summary of Modified Transport Equations

The set of modified equations which describe the coupled transfer of heat and mass through
hygroscopic porous materials are summarized below.

Total thermal energy equation (8.1)

" j=N

j=1

(p)CA - + +pO(c ),(Vp) .V(T)+ ohap(rh,+Q,)(rhsl)+(Q,+Aap)('h,)m=V.(K .V(T))
i=N

Li=1

Liquid phase equation of motion

-(i-)= -KJV(p1) +(my) -1PC) (8.2)

Liquid phase continuity equation

at VLpyv 1" (O -'V2)fipA 0(8.3)
which may be rewritten as:

2EVvA+(hv -?hv)= 0 (8.40at PO

Gas phase equation of motion

-( ý ) -- )V.f((i)Y + (P2) ) (8.5)

Gas phase continuity equation
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Gas phase diffusion equations

~ V.(PYY' ~efV ~(8.7)

aC (P2)T

'(eY(P2)/+V-(P2Y /) [Yeff ,V (py (8.8)

Solid phase density relations

(pa)' =(PI)' + (•2) (8.9)

PI = eF-.Pf, (8.10)

P2 = (1- •CL)Ps (8.11)

EI + CCtL = 1 (8.12)

Solid phase continuity equation

tT (Eo(PC,)+V .((po)>(<))+ (f,,j) + ,(h) = 0 (8.13)

Solid phase equation of motion (for one dimensional geometry)

1 4
(V = (P) 0  T (PU)'% (8.14)

Solid phase diffusion equation (for vaporizing component)

a P~AV(PI' (8.15)
Tt (P.),

Volume constraint

e(, (t) + Eft (t) + 1, (t) (8.16)

Thermodynamic relations

(pl)' (p, )'R (T)Y 
(8.17)(p2)' = (p2)Y R2 (T) (8.18)

(P,)' = <PO,> + 02>, (8.19)
(8.20)

PY = <P' +(P2)'1.204
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If any liquid phase is present, vapor pressure is given by:

(Pl)' = Pt eXP LrpfR(T)j + Ra I I or

(p,)' = po> exp- R---l (,-T) T..} (8.21)

If the liquid phase is not present, and the liquid component is desorbing from the solid, the reduced
vapor pressure in equilibrium with the solid must be used. This relation may be determined directly
from the sorption isotherm for the solid:

(pj)' = f(ps, p, pl, P L) at the temperature (T), only eOL is unknown. (8.22)

Sorption relations (volume average solid equilibrium)

_ _1 U 1g .19

Q.A, 0.2)=.+5j(I~ (Piý 1 .05 ___P (8.23)

PS )S

Loip! =CIP Rf 0.55(p1> 1 +

(P) 0  (1-N))e-)p , PS 0.25 +( ) 1.25- ý?l (8.24)

This is a total of 20 main equations and 20 unknown variables, which should allow for the solution
of the set of equations using numerical methods. The 20 unknown variables are:
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9. Simplification of Total Equation Set

The total equation set is quite complicated. There are several ways to simplify the set of equations,
yet still include the modes of energy and mass transport which are important in various situations.
First, we will include the the gas phase convection and the liquid phase convection terms, but make
several assumptions about the diffusion processes that will simplify the set of equations
significantly. Then we will further simplify the set of equations to examine the case where gas
phase convection is not present, but liquid capillary transport is important. Finally, we will simplify
the set of equations to the situation where mass is only tranportcd through diffusion in the gas
phase.

Simplified equations which include liquid and gas phase convection

The total drying equation set will be simplified by making several assumptions:

1) We will only use the continuity equations to account for the mass transfer of the component
which crosses phase boundaries (water). This means we will only use the species continuity and
diffusion equations for component 1.

2) We will use the diffusion coefficients for water in the solid and water in air, and ignore the
counterdiffusion of air through the water vapor, etc. We will assume these diffusion coefficients
are constant.

3) For the diffusion equations, we will assume that the density of the inert phase (solid or air) is
constant during the diffusion process.

4) We will ignore the swelling velocity of the solid phase, but will the include the change in
volume of the solid as water is absorbed.

5) We will assume transport only in one dimension (x).

Total thermal energy equation

(P)C, 'IT) [ PP(CP)O(Vi) 1 (T) +(T )1 k 91

Liquid phase equation of motion

(vk = -(51) a ((/' + wy )/- PC) (9.2)
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Liquid phase continuity equation

+ ! (1sv); =0 (9.3)

Gas phase equation of motion

9(9.4)

Gas phase continuity equation

at eTP )+T PT V)= (9.5)

Gas phase diffusion equation

Solid phase density relations (9.7)

)= (P)' +(P2) 0  (9,8)

PI = F-LPL

P2 =( - COL)PS (9.9)
eGS + e0 tL = 1 (9.10)

Solid phase continuity equation

"•tT I 0 (•<PC,),) + (?h,,) + < :0 (9.11)

Solid phase diffusion equation

~(ea.(PiX') + (?h,) +(inh'.) = aip (9.12)

Volume constraint

S(t) + e'I (t) + ey (t) 1(9.13)
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Thermodynamic relations

(ply)(py TR (T) 
(9.14)

(py)" = (p,)Y +(P2)y (9.16)

(Py)" = (pI)Y +(p 2 )' (9.17)

If any liquid phase is present, vapor pressure is given by:

= ex pr + I i o (9.18)
1-[(rppR(T) , \(T) T.

o L ( J]J1 (9.19)

If the liquid phase is not present, and the liquid component is desorbing from the solid, the reduced
vapor pressure in equilibrium with the solid must be used. This relation may be determined directly
from the sorption isotherm for the solid:

(pl)" = f(p,,pt,p5 ,ew,) at the temperature (T), only eot is unknown (9.20)

Sorption relations (solid equilibrium)

Q( (J/kg)=0.195(1-p'1- 1 +JS '(.0-1p (9.21)(02+OxP

-P Rf ( 0 .5 5 () 1 + 1

(P2)' (1_I)P= PS 0. 25+ (P 1  2 5  (9.22)

44Ps
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Transport Coefficients and Mixture Properties

keff k1pI+k2P2 +EA + e kIP1+ k +P2 (9.23)kef P 31+ 12 PI "+-P2

Deft =- e (9.24)

(P) = (9.25)

C, P = E[P)'(C) +N)'(Cp),] +CP(C) + y(I'C) (P2)2(p] (9.26)

This simplified equation set is now 19 equations for 19 variables, which is enough to solve the set
of equations for the following unknown variables:

P-)Y,(pl)',(P2),YP2 45
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Simplified equations which neglect gas phase convection

The gas phase conv'ection is now neglected, so that the air within the pore spaces is assumed to be
stagnant, and mass and energy are transported within the gas phase oaily by diffusion.

Total thermal energy equation

(P)CL 'am +) 1 (9.27)

Liquid phase equation of motion

(VAX) = -(101{ - ((y + P-) (9.28)

Liquid phase continuity equation

at ax + 0 (9.29)

Gas phase continuity equation

,(P-,(P,), ) = (r;'V) +(Oh-) (9.30)

Gas phase diffusion equation

"•°(£F<YOl) )-flv)-<Ohsv)- L 'Deff ' a(Pl') (9.31)

Solid phase density relations (9.32)
( P,,,) = (PI)' + (P2)c

PI = £O;LPL 
(9.33)

P2 =( - eoL)PS (9.34)

l oS + EaL = 1
(9.35)

Solid phase continuity equation

a'(F,(Po)')+('ht+(rh")= 0 (9.36)Yt

Solid phase diffusion equation
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Volume constraint
ec, (t) + E (t) + Et (t) =1(9.38)

Thermodynamic relations

(pl)y¥ = ýpl " R, (T) (9.39)

(p2)f =(p 2 )" R2 (T) (9.40)

(p,)" = (PI)y +(P2)' (9.41)

(p7 Y = (pl)' +(p 2 )Y (9.42)

If any liquid phase is present, vapor pressure is given by:

(pi)' = pjexp{[2 + r±a 1 - (.3
1p[( rR 1R,(T) R T ( () T(

or - ex) = [ J ex p l(T Tol (9.44)

If the liquid phase is not present, and the liquid component is desorbing from the solid, the reduced
vapor pressure in equilibrium with the solid must be used. This relation may be determined directly
from the sorption isotherm for the solid:
(p1)l = f (ppl,p,,e,) at the temperature (T), only E,, is unknown (9.45)

Sorption relations (solid equilibrium)

Q, (J/kg)=0.195 11 10 P(4
P S 0 .2 + P S P $"- -E

(p2)r (l CCFPI =Rf 0.55 ]1px

(P2) P 0. 25 + p 1.25_ (pt) (9.47)

PS PS
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Transport Coefficients and Mixture Properties

kef='kjp + k2p2 + EPA + Er( k1p, + k2P2  (9.48)

Deff =DFy(.9

e 0[(P1 )a(CP)1 +(p2)G (cp) 2]+ E~PP(cp), +s4Y(P 1 )Y(Cp)1 +(P2)Y(Cp)2] 9.1
CP = W(9.51

This simplified equation set is now 18 equations for 18 variables, which is enough to solve the set
of equations for the following unknown variables:
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Simplified equations which neglect both liquid and gas phase convection

Both liquid phase capillary transport, and gas phase convection are neglected, so that mass and
energy are transported within the gas phase only by diffusion, and the liquid which condenses at a
particular point within the material does not wick or flow away from that point, but accumulates
over time. The liquid may be absorbed into the solid phase, or it may evaporate at a later time, but
it may only be transported through the structure by going into the vapor phase.

Total thermal energy cquation

(P)CP D(T) + +ar (9.52)
L+(QI + A•Jvap)(?h•)j

Liquid phase continuity equation

=0I-+ (9•53)
')t PP

Gas phase continuity equation

I=FY~ly (PhIV)+ (Phs) (9.54)

Gas phase diffusion equation

((Fp->TP') -m,•)-<•,m3 • = - t[!txkff - PIY)J (9.55)

Solid phase density relations (9.56)

Pi = eaLPL 
(9.57)

P2 =(I - -OL)Ps (9.58)
ICO + eaL = 1

Solid phase continuity equation

at~
•t ((•<(•))+ 6•,t)+ rh•):0(9.60)

Solid phase diffusion equation

--o (E. (pI')' + (1h.t) +(rh') = -a-x,'•3 (9.61)
ax (x9.61) a
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Volume constraint
Ca (t) + EP (t) + S, (t) = 1 (9.62)

Thennodynamic relations

Sp, )y= (pl)y R, (T) (9.63)

(P2)T =(P 2)*R2(T) (9.64)
(pT,)V (pX~ + (P2)'t (9.65)

(Py'~ =(PX)• + (P2)' (9.66)

If any liquid phase is present, vapor pressure is given by:

Lkrpp (T)R R ((T) T.' (9.67)

,L R ( (9.68)

If the liquid phase is not present, and the liquid component is desorbing from the solid, the reduced
vapor pressure in equilibrium with the solid must be used. This relation may be determined directly
from the sorption isotherm for the solid:

(p1) T = f(p,,plp, ,,,) at the temperature (T), only E, is unknown (9.69)

Q, (J/kg)=0.195 -•_- 1 _.

(PlO 2+ + •(1 2 + I

(Pi)= ( ,___)P" = Rr (t 0.551 +

0.5 .2,

P.,) P
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Transport Coefficients and Mixture Properties

keff •So E ky + . + kIPI + k2P2  (9.72)
PI +P2 )P + P2)

Deff = Da-- (9.73)

(P) (pil)+ ( Y,) + p ) (P2)() + EP (0p0Y + (p2i)T) (9.74)

Cp =_ ) (9.75)

This simplified equation set is now 17 equations for 17 variables (the sorption equation and the
solid-vapor pressure equation are a duplicate), which are enough to solve the set of equations for
the following unknown variables:

(, ,>,?hS), (*S ,rh,), QS5
(p-f)", (PI )' ,(h)', (Pl,)', (PI)', (PN)',
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10. Comparison with Previously-Derived Equations

The simplified sytems of partial differential equations given in the previous chapter still contain
many equations with a large number of unknown variables. Even for the simplified case of vapor
diffusion, the system of equations is quite confusing, and it is difficult to verify their accuracy,
other than by checking for dimensional consistency. One way of checking their validity is to see if
they simplify down to more well-known diffusion equations for the transport of water vapor in air
through a porous hygroscopic solid. Such a system of equations has been well documented by
Henry12, Norden and David 9 , and Li and Holcombe" , who have used them to describe the
diffusion of water vapor through a hygroscopic porous material.

We will make the same assumptions used by these previous workers, and attempt to transform the
system of equations for the case of vapor diffusion (no liquid or gas phase convection) to their
system of equations. For completeness, we will also need to write the various equations in terms of
the variables and units used their work.

The major simplifying assumptions are: 1) there is no liquid or gas phase convection, 2) there is no
liquid phase present, 3) the heat capacity of the gas phase can be neglected, 4) the volume of the
solid remains constant and does not swell, 5) the solid and gas phase volume fractions are both
constant, 6) the thermal conductivity tensor may be expressed as a constant scalar thermal
conductivity coefficient, 7) the gas phase diffusion coefficient is constant, 7) the transport is one-
dimensional (x-direction).

The total thermal energy equation becomes:
)C•-��1 +(Q, + Ahvap)( V) V(Ky .V(T)) (10.1)

or

p)c T) +(Q, +A h) )=keff a2  (10.2)WC, t D•x2

The gas phase continuity equation becomes:

a (~£, TtjPY)) (10.3)

The gas phase diffusion equation (component 1--water vapor):

{(PT)t ffvPYi.J (10.4)

or

Y (10.5)
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The solid phase continuity equation (component 1--water):

ect =((p,)C)+ rh) = 0 (10.6)

For the solid phase diffusion equation (component 1--water) we assume that the diffusional
transport through the solid phase is insignificant compared to the diffusion through the gas phase, so
the diffusion equation reduces to the continuity equation:

I G ~,(p)G (10.7)

Volume fraction constraint

Er+9=1 ; Ca=l-EY (10.8)

Thermodynamic relations

(pl)y = (pl)y R (T) (10.9)

(p2)7 = (p2)Y R2(T) (10.10)

(py)" =(pP)Y +(p 2 )Y (10.11)

ýpy)'r = (PI)' + (P2)' (10.12)

We made the assuraption that the mass transport through the solid phase is negligible compared to
mass transport through the gas phase. This is reasonable since the diffusion coefficient for water in
a solid is always much less than the diffusion coefficient of water vapor through air. We thus only
have accumulation of water in the solid, and the solid acts as a source or sink for water vapor.

We can combine the continuity equations for water (component 1) for both phases by connecting
the phase equations through the mass flux from the solid to the gas phase:

eo ' ((PI) 0) + =mv) 0 (10.13)

~ 2(p1)T  (10.14)

S-%xx 2

eO (,_0Ple -,a, Deff a2 ý(10.15)

which we may rewrite in terms of the gas phase volume fraction as:

(E t ((pia)+ey E, ((p1 )Y)= 3 2P) (10.16)
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Through these various assumptions, we have reduced our large equation set down to two main
equations for the energy balance and the mass balance:

(),a(T + (Q, + Akap,)(Ph,) = keff all,(2  (10.17)

ax2  (10.18)

To make the comparison with the existing equations of Henry 12, Norden and David9 , and Li and
Holcombe 3, easier, we can rewrite the intrinsic phase averages in terms of the concentration of
water in the solid (CF) and concentration of water in the gas phase (C):

mass of water in solid phase = ml,=
CF = solid phase volume = = Pie (10.19)

C = mass of water in gas phase = m 1l = P, (10.20)

gas phase volume Vy

Since the definition of intrinsic phase average gives the same quantity as the true point value, we
may use the fact that (10.21)
(P = (C,) = CF(1

(PO)Y =(C)y =C 
(10.22)

to rewrite the mass balance equation as:
Sac a'c

• - = D.ff a-T (10.23)

We can rewrite the effective diffusion coefficient by using the diffusion coefficient for water vapor
in air modified by the gas volume fraction and the tortuosity of the gas volume fraction:

(1_, Da=ay 2 C
( at " at I = (10.24)

The thermal energy equation

p)C, -a(T)+(Q+ aP)(?h)=keff a2_ (10.25)

may also be modified by recognizing that the mass flux term is contained in the solid phase
continuity equation:

cc (CFI)(i6 = (10.26)
so that the thermal energy equation may be rewritten as:

__ T__ 2(C
(P)CP a)t (QI +Ahkap)ea aCt-keff ax2  (10.27)
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If we go back to our definitions for the mass fraction weighted average heat capacity,

j=N i=N

eoX j(pj)0 (cp). +ce. , ¥ (Cp)i
Cp = j=1( =) (10.28)(p)

and spatial average density,
J=N i=N

(p) = s-x(pX) +• CX ,) (10.29)
j=1 i=1

the thermal energy equation may be rewritten as:

+(2YC 1at (10.30)

att_(,+a.• ck r2  (10.31)

If we make the assumption that the heat capacity of the gas phase is negligible, then the thermal
energy equation becomes:

atT = "\ - D2 (T) (10.31)

or dividing through by the solid volume fraction:

[() ()l ((p)a ]-'(T2  (QI + '&Cp) aCF kea 2-(T) (10.32)
[(, ,(C , a/•p 2 t a o, t E= a x2

For consistent nomenclature with Li and Holcombe"' we will write the effective thermal
conductivity kf as K.

We can also define a volumetric heat capacity C1 as:

Units for (pj) 0 (cp), ar kg )(H I1(0.3
Skg gK J -• K

The final thermal energy equation reduces to:

C t_ - a+ ) at = K 22(T) (10.34)

5ax2
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The two simplified equations for the mass and energy balance are thus:
)•._•_ oC Da~y a32 C(1-_,P +a,- 1C"-

S(10.35)

Ca(T) - (Q,+ A,,) at= K a 2 T(10.36)at at aX2

These two simplified equations are very encouraging, since they are exactly the same as previous
equations derived by Henry"2, Norden and David9 , and Li and Holcombe'3 for describing the
diffusion of water vapor through a hygroscopic porous material. In their equations they define the
heat of sorption from the vapor phase into the solid (which is the opposite of the heat of desorption
which we used) as:

X = (Q, + &4,,) (10.37)

so that their equations are:

(c = Day cO2C

at at T DX2(10.38)

aJt at Dx2
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11. Conclusions

Whitaker's theory of coupled heat and mass transfer through porous media was modified to include
hygroscopic porous materials which can absorb liquid into the solid matrix. The system of
equations described in this report should make it possible to evaluate the time-dependent transport
properties of hygroscopic and non-hygroscopic clothing materials by including many important
factors which are usually ignored in the analysis of heat and mass transfer through textile materials.
The set of equations allows for the unsteady capillary wicking of sweat through fabric structure,
condensation and evaporation of sweat within various layers of the clothing system, forced gas
phase convection through the porous structure of a textile layer, and the swelling and shrinkage of
fibers and yams as they absorb/desorb liquid water and water vapor.

The simplified set of equations for heat and mass transport, where mass transport occurs due to
diffusion within the air spaces of the porous solid, was shown to reduce to the well-known coupled
heat and mass transfer models for hygroscopic fabrics, as exemplified by the work of Li and
Holcombe"4.

Work is underway to develop a numerical code to solve the various sets of equations by standard
numerical methods based on Patankar's control volume approach14. The numerical method is
similar to those developed by Whitaker and Vafail', and Tao, Besant, and Rezkallahl6 ,17 ,lS, which
have had success in modeling the unsteady coupled heat and mass transfer process in fibrous
insulation materials.

This document reports research undertaken at
the U.S. Army Natick Research, Development
and Engineering Center and has been assigned
No. NATICK/TR-95/004 in the series of reports
approved for publication.
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